This is an example programming model of ODMO program.

With \(\boldsymbol{Q} = \boldsymbol{q} \boldsymbol{q}^T\) and \(\boldsymbol{q}, \boldsymbol{p} \in \mathbb{R}^2\) $$ \begin{align} \underset{\boldsymbol{x} = [x_1, x_2]^T}{\min} & \quad \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{p}^T \boldsymbol{x} \\ \text{s.t.} & \quad \boldsymbol{x} \succeq 0 \\ & \quad \boldsymbol{B} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{B} \in \mathbb{R}^{2 \times 2}, \boldsymbol{b} \in \mathbb{R} \end{align} $$


[Set] appropriate values below to describe your problem.

Input value of \(\boldsymbol{q}\) =


Input value of \(\boldsymbol{p}\) =


Input value of \(\boldsymbol{B}\) =


Input value of \(\boldsymbol{b}\) =


[CLICK] here to get your solution



__________ __________