This is the app page of ODMO program for minimizing hot-rolling process using GP

Hot-rolling process is provided that the cost \(C\) is a function of dimension less temperature \(T\), thickness ratio \(x\), velocity ratio \(y\)
$$ \begin{align} \underset{x, y, T}{\min} & \quad C= a + b x^2 y + \frac{c}{T^2} \\ {\sf{s.t.}} & \quad xy=1, T=\frac{dx}{y} \end{align} $$
Input value of a: Input value of b:
Input value of c: Input value of d:

How to minimize the cost in the hot-rolling process?

[CLICK] here to solve the optimization problem

__________ __________